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Abstract
A perturbative quantization procedure for Lie bialgebras is introduced. The
relevance of the choice of a completely symmetrized basis of the quantum
universal enveloping algebra is stressed. Sets of elements of the quantum
algebra that play a role similar to generators in the case of Lie algebras
are considered and a Cartan-like procedure applied to find a representative
for each class of quantum algebras. The method is used to construct and
classify all three-dimensional complex quantum algebras that are compatible
with a given type of coproduct. The quantization of all Lie algebras that,
in the classical limit, belong to the most relevant sector in the classification
for three-dimensional Lie bialgebras given in [1] is thus performed. New
quantizations of solvable algebras, whose simplicity makes them suitable for
possible physical applications, are obtained and already known related quantum
algebras recovered.

PACS number: 02.20.Uw
Mathematics Subject Classification: 81R50, 81R40, 17B37

1. Introduction

The Cartan classification of semisimple Lie algebras has certainly facilitated some of their
applications in physics. However, the existence of the analogous classification scheme
for quantum algebras is still an open problem, and the physical applications of quantum
deformations are also far from being fully developed and understood. For these reasons, this
paper deals with some aspects of the problem of the construction and classification of quantum
universal enveloping algebras (hereafter, quantum algebras) [2–5].
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It is well known that any quantum algebra (Uz(a),�) with deformation parameter z

defines a unique Lie bialgebra structure (a, η), a pair determined by the Lie algebra a and
a skew-symmetric linear map (cocommutator) η : a → a ⊗ a . Such a cocommutator η is
defined as the first-order skew symmetric part of the coproduct

η(X) = 1
2 (�(X) − σ ◦ �(X)) mod z2 ∀X ∈ a (1.1)

where σ is the flip operator σ(X ⊗ Y ) = Y ⊗ X.
Therefore, quantum deformations of a given Lie algebra a can be classified according

to this ‘semi classical’ limit. Moreover, we recall that Lie bialgebras are in one to one
correspondence with Poisson–Lie structures on the group Lie(a) [6] that arise again as the first
order in z of the quantum groups dual to the quantum algebras (Uz(a),�). With this in mind,
some classifications of Lie bialgebra structures for several physically relevant Lie algebras
have been obtained. For the three-dimensional (3D) case we will recall the full classification
of Lie bialgebras given in [1] and for some higher dimensional Lie bialgebras we refer to [7]
and references therein.

However, it is clear that the inverse problem has also to be faced: that is, to obtain general
recipes for the ‘quantization’ (i.e. the associated quantum algebra) of a given Lie bialgebra
(a, η). Although existence of such an object is indeed guaranteed (see [3], chapter 6), only
for coboundary triangular bialgebras the Drinfel’d twist operator gives rise to the associated
quantum algebra [4]. However, quasi-triangular and even non-coboundary Lie bialgebras do
exist and for them the twist operator approach to quantization is not available. We recall that
some attempts in order to get structural properties of the quantization of arbitrary Lie bialgebras
have been performed (see [8, 9] for a prescription to get the quantum coproduct—but not the
deformed commutation rules—for a wide class of examples). Moreover, to our knowledge, a
general investigation concerning the uniqueness of this Lie bialgebra quantization process has
not been yet given and only restrictive results for certain deformations of simple Lie algebras
have been obtained (see [10], chapter 11). As a consequence of the above-mentioned facts,
a complete classification of quantum algebras in the spirit of the Cartan classification for Lie
algebras is still far to be reached.

In this paper we present a ‘direct approach’ to the quantization problem, together with an
operational procedure à la Cartan (in a sense that will be made more explicit in the sequel)
for the classification of quantum algebras. The essential ingredients of the quantization
method are described in section 2. In particular, given a Lie bialgebra we shall firstly obtain a
coassociative quantum coproduct with some outstanding symmetry properties and, afterwards,
we shall solve order by order the compatibility equations for the deformed commutation rules.

In section 3 this approach will be explicitly developed for a relevant type of cocommutator
η that is compatible with all the non-isomorphic 3D complex Lie algebras, as described—
for instance—in Jacobson [11]. This cocommutator gives rise to a very simple coproduct
and to deformed commutators that are manageable enough. In this way we obtain three
different families of quantum algebras whose deformed commutation rules are quite general
and depend on several structure constants. We would like to stress that, instead the usual
Poincaré–Birkhoff–Witt (PBW) basis, our quantization procedure makes use of a completely
symmetrized basis in the universal enveloping algebra. This choice has not been previously
considered in the literature, but is certainly convenient in quantum physics and leads to a
straightforward classical (Poisson) limit for all the quantum algebras here presented.

In order to classify such quantizations, in section 4 we consider the equivalence
transformations that are defined through invertible maps in Uz(a) that preserve a form-invariant
coproduct for the basis elements of the algebra. This constraint regarding the form invariance
of the coproduct can be understood as a way to identify certain basis elements as some sort of
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‘generators’ of a quantum algebra. In other words, we follow for quantum algebras the ‘Cartan’
approach to the classification of Lie algebras within U(a), where only linear transformations
in the space of generators leaving invariant their (primitive) coproduct are performed. After
such a classification is systematically developed, new quantizations of 3D solvable algebras
are obtained, and already known results are recovered. The above-mentioned simplicity of the
algebraic and coalgebraic structures of these new quantizations notably increases their possible
interest in physical applications. In order to make more precise the range of 3D deformations
that have been covered, a detailed comparison with the complete classification of 3D real Lie
bialgebra structures presented in [1] is explicitly given in the final section, together with some
further comments and conclusions.

2. The quantization method

Let us consider the Lie algebra a and its universal enveloping algebra U(a) [11]. If we define
the coproduct: �0, counit: ε and antipode: γ (∀X ∈ a)

�0(X) = 1 ⊗ X + X ⊗ 1 �0(1) = 1 ⊗ 1 ε(X) = 0 ε(1) = 1 γ (X) = −X

and we extend by linearity all these (anti)automorphisms to the full U(a); we shall endow the
universal enveloping algebra with a Hopf algebra structure. In general, an element Y of a Hopf
algebra is called primitive if

�(Y) = 1 ⊗ Y + Y ⊗ 1.

It can be shown that the only primitive elements of U(a) under the coproduct �0 are the
generators of a (this result is known as the Friedrichs theorem [12]). Note that an essential
property of the Hopf algebra U(a) is its cocommutativity, since �0 is invariant under the
action of the flip operator σ .

Let us now consider the Hopf algebra U(a) and a deformation parameter z. A quantum
algebra (Uz(a),�) is the Hopf algebra of formal power series in the deformation parameter z

with coefficients in U(a) and such that [3]

Uz(a)/zUz(a) � U(a).

Therefore, U(a) is obtained (as the Hopf algebra) in the limit z → 0, and the first order in z

of the coproduct is directly related to the cocommutator of an underlying Lie bialgebra (a, η)

through (1.1). In this way, Lie bialgebras can be used to characterize quantum deformations.
Amongst all the Hopf algebra axioms to be imposed, we recall that the quantum coproduct �

has to be a coassociative map, namely

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �. (2.1)

From now on, we shall refer to the ‘quantization’ of a given Lie bialgebra (a, η) as the
problem of finding a quantum algebra (Uz(a),�) such that (1.1) is fulfilled (we recall that the
uniqueness of such a construction cannot be taken for granted).

The general quantization procedure that we propose is based on three essential ingredients
that can be considered whatever the dimension of the Lie bialgebra is. The first one is a
generalized cocommutativity property for the coproduct, the second one is related to the
choice of a basis in the universal enveloping algebra and the third one selects a given type of
power series expansion for the deformed commutation rules.

(1) Generalized cocommutativity. In general, we impose the (noncocommutative) quantum
coproduct � to be invariant under the composition σ̃ = σ ◦ T of the flip operator σ and
a change of sign of (all) the deformation parameter(s):

σ̃ ◦ � = � where σ̃ = T ◦ σ and T (z) = −z.
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We point out that definition (1.1) for the underlying cocommutator implies that
the deformation parameters do appear explicitly as multiplicative factors within the
cocommutator. This symmetry property of the coproduct can be imposed in any dimension
and makes much easier the procedures of symmetrization and ‘Hermitation’ [13]. In
particular, given a certain Lie bialgebra (a, η), the above assumption implies that the
first-order deformation of the coproduct will be just given by the (skew symmetric) Lie
bialgebra cocommutator

�(X) = �0(X) + η(X) + O[z2] X ∈ g. (2.2)

Moreover, the invariance of � under the transformation σ̃ together with the fact that
the coproduct is an algebra homomorphism with respect to the deformed commutation
rules [·, ·]z (i.e., �([·, ·]z) = [�(·),�(·)]z) implies that [·, ·]z has to be an even function
in the deformation parameter z.

(2) The choice of a basis in Uz(a). In contradistinction with previous works on this subject
in which the PBW basis Xα

1 X
β

2 . . . X
ζ

l is considered, we introduce a basis in Uz(a) given
by the completely symmetrized monomials. Thus, we define the linear operator Sym by

Sym
{∑

cαβ...ζX
α
1 X

β

2 . . . X
ζ

l

}
=

∑
cαβ...ζ Sym

{
Xα

1 X
β

2 . . . X
ζ

l

}

where

Sym{A1 . . . An} := 1

n!

∑
p∈Sn

p(A1 . . . An),

with Sn the permutation group of n elements. Note that Sym is just the identity operator
for commutative basis elements.

This symmetrization procedure, although very convenient in quantum mechanical
terms, has not been previously considered in the literature, and turns out to be very
efficient in order to get the explicit form of the deformed commutation rules. We remark
that one of the main advantages of the symmetrized basis in the quantum algebra is the fact
that if we replace the deformed commutation rules by Poisson brackets, the corresponding
Poisson–Hopf algebra is uniquely (and immediately) defined.

(3) Deformed commutation rules. We will assume

[X, Y ]z = 1

z
Sym(f (zX1, zX2, . . . , zXl)) (2.3)

where f is a meromorphic function at z = 0 and also odd in z.

The discussion can be extended to the multiparametric case considering meromorphic
deformations of Lie algebras with ρij = zi/zj fixed.

Under all these assumptions, given a Lie bialgebra (a, η), the ‘direct’ quantization
procedure that we propose would be sketched as follows:

• Assume that the first-order coproduct is of the form (2.2).
• Order by order in the deformation parameter(s), get the relations coming from the

coassociativity constraint (2.1) and solve them recursively by taking into account the
invariance under σ̃ of the solution, thus obtaining the full quantum coproduct.

• Obtain, again order by order, the deformed commutation rules by solving the compatibility
equations coming from the fact that the coproduct has to be an algebra homomorphism.
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3. Three-dimensional quantum algebras

Let {A,B,C} be the generators of an arbitrary complex 3D Lie algebra L with commutators

[A,B] = c1A + c2B + c3C

[A,C] = b1A + b2B + b3C

[B,C] = a1A + a2B + a3C

(3.1)

where the structure constants are complex numbers subjected to some (nonlinear) relations
coming from the Jacobi identity.

We recall that the complete classification of the 3D complex Lie algebras is given in [11]
(see, for instance, [14] for the real case). According to the dimension of the derived algebra
L′ = [L,L], the nonisomorphic classes of 3D Lie algebras read

• Type I. dimL′ = 0. Then L is Abelian. We shall not consider this case from the
point of view of quantum deformations, since any coassociative coalgebra with primitive
non-deformed limit is compatible with the Abelian commutation rules.

• Type II. dimL′ = 1. We have two algebras, the Heisenberg–Weyl algebra and a central
extension L = B ⊕ C of the Borel algebra, where B is a Borel algebra and C commutes
with B.

• Type III. dimL′ = 2. We have the family on non-isomorphic Lie algebras labelled by the
nonzero complex number α with commutators

[X1, X2] = 0 [X1, X3] = X1 [X2, X3] = αX2 (3.2)

and the Lie algebra

[X1, X2] = 0 [X1, X3] = X1 + X2 [X2, X3] = X2. (3.3)

Note that the algebra with α = 1 is the solvable algebra generated by a dilation X3 and
two translations {X1, X2}. The case α = −1 corresponds to the (complex) Euclidean Lie
algebra.

• Type IV. dimL′ = 3. The only element in this class is the simple Lie algebra A1.

Obviously, once a set of values for the structure constants {ai, bi, ci} is given, a suitable
linear transformation Xi = Xi(A,B,C) with complex coefficients can be found in such a
way that the Lie algebra (3.1) is reduced to one of the Jacobson cases. However, in (3.1) there
is a symmetry in {A,B,C} that can be broken in the quantization.

In particular, by looking at the complexified form of the classification of 3D Lie bialgebras
given in [1], one can realize that a cocommutator of the form

η(A) = 0 η(B) = zA ∧ B η(C) = ρzA ∧ C z, ρ ∈ C (3.4)

defines a Lie bialgebra structure for each of the types of Lie algebras given in Jacobson’s
classification provided that different linear transformations Xi = Xi(A,B,C) are defined
and that ρ takes certain appropriate values. Since we are interested in obtaining the most
general types of deformed commutation rules arising in 3D quantizations, we shall apply the
perturbative quantization procedure described in the previous section in order to get a quantum
coproduct coming from the cocommutator (3.4) together with a compatible deformation of
the commutation rules (3.1). We remark that the cocommutator (3.4) can be thought of as a
two parameter structure in z and χ = ρz. Moreover, complex values for all the parameters
(including the structure constants {ai, bi, ci} and ρ) will be considered, and the results here
presented will also contain the quantizations at the roots of unity.
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Let us follow step by step the procedure introduced in section 2. Firstly, we assume that
the quantum coproduct will be of the form (2.2), namely

�(A) = 1 ⊗ A + A ⊗ 1

�(B) = 1 ⊗ B + B ⊗ 1 + zA ∧ B + O[z2]

�(C) = 1 ⊗ C + C ⊗ 1 + ρzA ∧ C + O[z2].

(3.5)

In this case, it is straightforward to prove that the following coassociative coproduct has a first
order given by the cocommutators (3.4) and is invariant under the transformation σ̃

�(A) = 1 ⊗ A + A ⊗ 1

�(B) = ezA ⊗ B + B ⊗ e−zA

�(C) = eρzA ⊗ C + C ⊗ e−ρzA.

(3.6)

Now we have to obtain the deformed commutation rules by solving the compatibility
equations coming from the fact that the coproduct has to be an algebra homomorphism. Since
the σ̃ -invariance of the coproduct implies that the first-deformed term in the commutation
rules has to be of order z2, the first-order coproduct (3.5) has to be compatible with the
non-deformed commutation rules. This condition leads to the following relations between the
structure constants and ρ:

b2(1 − ρ) = 0 c3(1 − ρ) = 0 b1 = −ρa2 a3 = ρc1 b3 = −ρc2. (3.7)

Jacobi identity imposes the further relation

(1 − ρ)[a2c1(1 + ρ) − a1c2] = 0. (3.8)

Now we can distinguish the following three cases:

(1) Case ρ 
= ±1:

b2 = 0 c3 = 0 b1 = −ρa2 a3 = ρc1 b3 = −ρc2

a2c1(1 + ρ) − a1c2 = 0.
(3.9)

Note that the space of parameters is 3D.

(2) Case ρ = +1:

b1 = −a2 a3 = c1 b3 = −c2. (3.10)

In this case the space of parameters is 6D.

(3) Case ρ = −1:

b2 = 0 c3 = 0 b1 = a2 a3 = −c1 b3 = c2 a1c2 = 0. (3.11)

Here, the space of parameters is 3D.

In all these cases, when the quantization procedure is extended to higher orders no additional
conditions between the structure constants are found, in spite of the fact that we have assumed
no dependence of the structure constants on the deformation parameter.

Now, we are in conditions to obtain the deformed commutators. So, the integration of the
above equations to all orders gives the most general families of 3D quantum algebras that are
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compatible with the deformed coproduct (3.6). We find

(1) Case ρ 
= ±1:
(1.1) c2 
= 0:

[A,B] = c1 sinh(zA)/z + c2B

[A,C] = −a2 sinh(zρA)/z − ρc2C (3.12)

[B,C] = a2c1

c2

sinh[z(1 + ρ)A]

z
+ a2Sym[B cosh(zρA)] + ρc1Sym[C cosh(zA)].

(1.2) c2 = 0, a2 = 0:
[A,B] = c1 sinh(zA)/z

[A,C] = 0 (3.13)

[B,C] = a1
sinh[z(1 + ρ)A]

z(1 + ρ)
+ ρc1C cosh(zA).

Note that the case with (c1 = 0, c2 = 0) is equivalent to the one with (c2 = 0, a2 = 0).
(2) Case ρ = +1:

(2.1)
[A,B] = c1 sinh(zA)/z + c2B + c3C

[A,C] = −a2 sinh(zA)/z + b2B − c2C

[B,C] = a1 sinh(2zA)/(2z) + Sym{(a2B + c1C) cosh(zA)}
(3.14)

(3) Case ρ = −1:
(3.1) c2 
= 0:

[A,B] = c1 sinh(zA)/z + c2B

[A,C] = b1 sinh(zA)/z + c2C

[B,C] = Sym{(b1B − c1C) cosh(zA)}.
(3.15)

(3.2) c2 = 0:
[A,B] = c1 sinh(zA)/z

[A,C] = b1 sinh(zA)/z

[B,C] = a1A + Sym{(b1B − c1C) cosh(zA)}.
(3.16)

It is worth noticing that the symmetric role played by both non-primitive generators in the
quantization procedure is reflected by a symmetry in many of the above-reported algebras.

4. Equivalence and classification

In general, two quantum algebras are said to be equivalent (isomorphic) if there exists an
invertible (nonlinear in many cases) map between their corresponding quantum universal
enveloping algebras as Hopf algebras. In this way, equivalence classes of quantum
deformations can be defined. But it is also clear that, due to the infinite number of possibilities
given by arbitrary nonlinear transformation maps, such equivalence classes are huge. For
classification purposes some general criteria is, thus, needed in order to perform an appropriate
choice of a ‘canonical’ representative within each equivalence class. Also, it seems quite
natural to assume that such a choice has to be related with some structural property regarding
the coproduct. Moreover, the definition of such canonical representatives would lead to the
objects that can be properly called the ‘generators’ of the quantum algebra.

In fact, the standard classification of (non-deformed) Lie algebras can be understood as a
two step operation: first from the universal enveloping algebras the generators are extracted as
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the elements with the simplest coproduct (primitive, in agreement with the Friedrichs theorem);
then the (Cartan) classification of Lie algebras is performed choosing between the generators
a basis having the ‘simplest’ commutation rules (minimum number of non-vanishing structure
constants). We stress that, in this last step, only linear transformations are allowed because
they leave the coproduct invariant in form (primitive, as we have not deformations).

From this perspective, we propose a definition of the ‘canonical’ representatives of
quantum algebras by following a similar procedure. In this case it is essential to realize
that a quantum algebra Uz(a) is endowed with a deformed coproduct � which is no longer
cocommutative. Thus, in order to find the ‘canonical’ generators, we shall start from (3.6),
by inspection the simplest coproduct compatible with (3.5). Then we shall move within
the equivalence subclass defined through the restricted set of Hopf algebra isomorphisms of
quantum universal enveloping algebras that preserve a form-invariant coproduct and through
such restricted isomorphisms we shall look for representatives with ‘irreducible’ deformed
commutation rules having a minimal number of non-zero terms.

By proceeding in this way, we have succeeded in classifying all the non-isomorphic
quantum algebras that are contained in the three multiparameter families given in the previous
section. Let us explicitly obtain them by eliminating many irrelevant parameters through
mappings preserving a form-invariant coproduct.

4.1. Case 1: ρ 
= ±1

Let us start with the case ρ 
= ±1. Let us consider the following transformation [15]:

A = αA B = βB + δ
sinh(A)

z
C = νC + η

sinh(zρA)

zρ

ẑ = α−1z α, β, δ, ν, η ∈ C.

(4.1)

After this transformation the coproduct (3.6) becomes

�(A) = 1 ⊗ A + A ⊗ 1

�(B) = eẑA ⊗ B + B ⊗ e−ẑA

�(C) = eẑρA ⊗ C + C ⊗ e−ẑρA

(4.2)

i.e. it is form-invariant. So, we can say that all the elements related through (4.1) belong of
the same class of quantum algebras. In particular, we get the following possibilities:

(1.1) c2 
= 0. In this case the above-mentioned change of basis (4.1) can be reduced to

A = A/c2 B = c2B + c1
sinh(zA)

z
C = c2C + a2

sinh(zρA)

zρ

ẑ = c2z.

(4.3)

(1.1.1) Under this change of basis we obtain the new Lie commutators
[A,B] = B [A, C] = −ρC [B, C] = 0 (4.4)

which correspond to a quantization of the Lie algebra (3.2). Its associated bialgebra
is a non-coboundary one, i.e. there is no classical r-matrix.

(1.2) c2 = 0. We have two quantum algebras. Following a procedure analogous to (4.3) they
can be written as

(1.2.1) a2 = 0, c1 
= 0
[A,B] = sinh(ẑA)/ẑ [A, C] = 0 [B, C] = ρC cosh(ẑA). (4.5)
The underlying Lie bialgebra is a coboundary one: the classical r-matrix is
r = ẑA ∧ B. It is non-standard, i.e. it verifies the classical Yang–Baxter equation.
This is another quantum deformation of the Lie algebra (3.2).
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(1.2.2) a2 = 0, a1 
= 0, c1 = 0

[A,B] = 0 [A, C] = 0 [B, C] = sinh[ẑ(1 + ρ)A]

ẑ(1 + ρ)
. (4.6)

This is also a coboundary deformation with standard r-matrix given by r = ẑB∧ C,
i.e. r fulfils the modified classical Yang–Baxter equation.

Note that for ρ = 0 we have obtained two deformations of the extended Borel algebra
and one deformation of the Heisenberg–Weyl algebra (both Lie algebras belong to type II in
Jacobson’s classification).

4.2. Case 2: ρ = +1

The equivalence classes are defined by applying to (3.14) the following transformation:

A = αA B = βB + γC + δ
sinh(zA)

z
C = µB + νC + η

sinh(zA)

z

ẑ = α−1z α, β, γ, δ, µ, ν, η ∈ C.

(4.7)

This transformation allows us to distinguish the quantum algebras characterized by
b2c3 + c2

2 
= 0 and those in which b2c3 + c2
2 = 0.

(2.1) b2c3 + c2
2 
= 0

(2.1.1)

[A,B] = B [A, C] = −C [B, C] = sinh(2ẑA)

2ẑ
. (4.8)

This quantum algebra is just A1(q). The classical r-matrix is r = zB ∧ C, and is a
standard one.

(2.1.2)

[A,B] = B [A, C] = −C [B, C] = 0. (4.9)

This is the complexification of the quantum two-dimensional Euclidean algebra
E(2) that was firstly obtained as the contraction of the above suq(2) deformation in
[16]. It is a non-coboundary one.

(2.2) b2c3 + c2
2 = 0

(2.2.1) a2c2 + b2c1 
= 0

[A,B] = − sinh(ẑA)

ẑ
[A, C] = B [B, C] = −Sym{C cosh(ẑA)}. (4.10)

This is the symmetrized version of the well-known Jordanian deformation of
A(1) [17] with non-standard classical r-matrix r = ẑA ∧ B. According to the
commutation relations (4.10) we obtain that

Sym(C cosh(ẑA)) = 1

2
(C cosh(ẑA) + cosh(ẑA)C)) +

1

12
ẑ2 sinh

2ẑA
2ẑ

.

Thus, the quantum algebra presented in [17] is a particular case of (3.14) with
z-dependent parameters.

(2.2.2) a2c2 + b2c1 = 0. We obtain the following algebras:
(2.2.2.1)

[A,B] = sinh(ẑA)

ẑ
[A, C] = 0 [B, C] = C cosh(ẑA). (4.11)

We recover a non-standard deformation of the Euclidean group in two
dimensions E(2) [18]. The classical r-matrix is non-standard, r = ẑA ∧ B.
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(2.2.2.2)

[A,B] = 0 [A, C] = −B [B, C] = sinh(2ẑA)

2ẑ
. (4.12)

We have the standard deformation of E(2) with classical r-matrix r = ẑB ∧ C.
(2.2.2.3)

[A,B] = 0 [A, C] = 0 [B, C] = sinh(2ẑA)

2ẑ
. (4.13)

It corresponds to a deformation of the Heisenberg–Weyl algebra with classical
standard r-matrix, r = ẑC ∧ B.

(2.2.2.4)

[A,B] = 0 [A, C] = B [B, C] = 0. (4.14)

This is a non-coboundary deformation of the Heisenberg–Weyl algebra.

4.3. Case 3: ρ = −1

The classification of the quantum algebras corresponding to the case ρ = −1 can be performed
by considering the transformation:

A = αA B = βB + δ
sinh(zA)

z
C = νC + η

sinh(zA)

z
ẑ = α−1z (4.15)

where α, β, δ, ν, η are complex numbers. So, we obtain the following classes of quantum
algebras:

(3.1) c2 
= 0

[A,B] = B [A, C] = C [B, C] = 0. (4.16)

We have a deformation of the dilation algebra with no classical r-matrix.
(3.2) c2 = 0:

(3.2.1)
[A,B] = −sinh(ẑA)/ẑ

[A, C] = sinh(ẑA)/ẑ

[B, C] = A + (B + C) cosh(ẑA).

(4.17)

Like in the previous case, this is a non-coboundary deformation.
Note that in the limit of ẑ → 0 we get

[A,B] = −A [A, C] = A [B, C] = A + (B + C)

that can be rewritten under a change (B + C → B) in the form

[A,B] = 0 [A, C] = A [B, C] = A + B. (4.18)

Therefore, we have obtained a quantum deformation of the Lie algebra (3.3).
(3.2.2) Other deformation of (3.3), now of non-standard type, is

[A,B] = 0 [A, C] = sinh(ẑA)/ẑ [B, C] = A + B cosh(ẑA). (4.19)

The r-matrix is r = ẑA ∧ C.
(3.2.3)

[A,B] = −sinh(ẑA)/ẑ

[A, C] = sinh(ẑA)/ẑ

[B, C] = (B + C) cosh(ẑA).

(4.20)

This is another non-coboundary deformation of the dilation algebra in two
dimensions.
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(3.2.4)

[A,B] = 0 [A, C] = 0 [B, C] = A. (4.21)

It corresponds to a coboundary deformation of the Heisenberg–Weyl algebra with
standard r-matrix, r = ẑB ∧ C.

(3.2.5)

[A,B] = −sinh(ẑA)/ẑ [A, C] = 0 [B, C] = C cosh(ẑA). (4.22)

We have another deformation of the dilation algebra in two dimensions. In this case
the classical r-matrix is a non-standard one, r = ẑA ∧ B.

5. Conclusions and remarks

As a result, we have shown that the quantization method presented here can be simultaneously
applied and successfully solved for a multiparameter family of 3D Lie bialgebras that share
some structural properties. In particular, note that the parameter ρ is a complex one, but
we have obtained many interesting ‘isolated’ solutions for ρ = ±1. On the other hand, the
comparison with the complete classification of 3D real Lie bialgebras given in [1] can be
worked out by considering the well-known isomorphisms among the complexified versions of
3D real Lie algebras.

It can be shown that all the quantum algebras that we have obtained in section 4 are
quantizations of the complexifications of the dual version of the Lie bialgebras given in [1].
In order to find out the correspondence explicitly in table III of [1], we have to identify a given
algebra a with the complex version of the dual Lie algebra g∗ and, consequently, the dual of
the cocommutator η will have to be isomorphic to one of the algebras g in the first row of
such a table. By proceeding in this way we find the following correspondences, where we
firstly write the Lie bialgebras (g∗, g ≡ η∗) as labelled in table III of [1] and, afterwards, the
corresponding quantum algebra according to our classification:

5 → 1.2.2) 6 → 1.2.1) 7 → 1.1.1)

(1) → 2.1.1) (2), (4) → 2.1.1) (3) → 2.2.1) 9 → 2.1.2) 11, 11′ → 2.2.2.2)

10 → 2.2.2.4) 5ρ=1 → 2.2.2.3) 6ρ=1 → 2.2.2.1) 7ρ=1 → 2.1.2)ρ=1

5′ → 3.2.4) 8 → 3.2.1) (14) → 3.2.2) (11) → 3.2.3) 6ρ=−1 → 3.2.5)ρ=−1

7ρ=−1 → 3.1)ρ=−1.

We can realize that our choice (3.4) for the cocommutator implies that we have been able
to obtain the quantizations for the full set of dual Lie bialgebras (g∗, g ≡ η) of [1] such that
η∗ ≡ r3(ρ) for all values of ρ. In fact, the ρ parameter in (3.4) can be identified with the one
appearing in Gomez’s classification.

Finally, we would like to comment that the quantization procedure presented here can be,
in principle, applied to higher dimensions with no need of further hypotheses, although it will
certainly be cumbersome but not impossible with the help of a computer. In this respect, we
recall that the complete classification of Lie bialgebra structures is only known for a restricted
number of higher dimensional Lie algebras. Moreover, in a completely general situation, one
would expect that our ‘order by order’ quantization procedure will have to be simultaneously
solved for both the quantum coproduct and the deformed commutation rules, whilst in the 3D
case presented here the full quantum coproduct (3.6) has been integrated independently.
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